3.933 \(\int \frac {\sqrt {a+b x^2+c x^4}}{x^2} \, dx\)

Optimal. Leaf size=303 \[ \frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}-\frac {\sqrt {a+b x^2+c x^4}}{x}+\frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}} \]

[Out]

-(c*x^4+b*x^2+a)^(1/2)/x+2*x*c^(1/2)*(c*x^4+b*x^2+a)^(1/2)/(a^(1/2)+x^2*c^(1/2))-2*a^(1/4)*c^(1/4)*(cos(2*arct
an(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/
2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/(c*x^4+b*
x^2+a)^(1/2)+1/2*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*a
rctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*(b+2*a^(1/2)*c^(1/2))*((c*x^4
+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(1/4)/c^(1/4)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1117, 1197, 1103, 1195} \[ \frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}-\frac {\sqrt {a+b x^2+c x^4}}{x}+\frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/x^2,x]

[Out]

-(Sqrt[a + b*x^2 + c*x^4]/x) + (2*Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2) - (2*a^(1/4)*c^(1
/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)
/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/Sqrt[a + b*x^2 + c*x^4] + ((b + 2*Sqrt[a]*Sqrt[c])*(Sqrt[a] + Sqrt[c]
*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqr
t[a]*Sqrt[c]))/4])/(2*a^(1/4)*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1117

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2
+ c*x^4)^p)/(d*(m + 1)), x] - Dist[(2*p)/(d^2*(m + 1)), Int[(d*x)^(m + 2)*(b + 2*c*x^2)*(a + b*x^2 + c*x^4)^(p
 - 1), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -1] && IntegerQ[2*p] &&
(IntegerQ[p] || IntegerQ[m])

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^2+c x^4}}{x^2} \, dx &=-\frac {\sqrt {a+b x^2+c x^4}}{x}+\int \frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}} \, dx\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{x}+\left (b+2 \sqrt {a} \sqrt {c}\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx-\left (2 \sqrt {a} \sqrt {c}\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{x}+\frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt {a+b x^2+c x^4}}+\frac {\left (b+2 \sqrt {a} \sqrt {c}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.81, size = 435, normalized size = 1.44 \[ \frac {-i \sqrt {2} x \sqrt {b^2-4 a c} \sqrt {\frac {-\sqrt {b^2-4 a c}+b+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^2}{\sqrt {b^2-4 a c}+b}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+i x \left (\sqrt {b^2-4 a c}-b\right ) \sqrt {\frac {\sqrt {b^2-4 a c}+b+2 c x^2}{\sqrt {b^2-4 a c}+b}} \sqrt {\frac {-2 \sqrt {b^2-4 a c}+2 b+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-2 \sqrt {\frac {c}{\sqrt {b^2-4 a c}+b}} \left (a+b x^2+c x^4\right )}{2 x \sqrt {\frac {c}{\sqrt {b^2-4 a c}+b}} \sqrt {a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/x^2,x]

[Out]

(-2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(a + b*x^2 + c*x^4) + I*(-b + Sqrt[b^2 - 4*a*c])*x*Sqrt[(b + Sqrt[b^2 - 4*
a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*E
llipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])
] - I*Sqrt[2]*Sqrt[b^2 - 4*a*c]*x*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sq
rt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])
]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*Sqrt[a + b*x^2 +
c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.68, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + b x^{2} + a}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)/x^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{4} + b x^{2} + a}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 381, normalized size = 1.26 \[ -\frac {\sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \left (-\EllipticE \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )+\EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )\right ) a c}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}+\frac {\sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}+4}\, b \EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/x^2,x)

[Out]

-(c*x^4+b*x^2+a)^(1/2)/x+1/4*b*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^
(1/2)*(2*(b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*2^(1/2)*((-b+(-4*a*c+b^2)^(
1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2))-c*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(
-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)*(2*(b+(-4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-
4*a*c+b^2)^(1/2))*(EllipticF(1/2*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b
/c-4)^(1/2))-EllipticE(1/2*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*x,1/2*(2*(b+(-4*a*c+b^2)^(1/2))/a*b/c-4)^
(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{4} + b x^{2} + a}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {c\,x^4+b\,x^2+a}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^(1/2)/x^2,x)

[Out]

int((a + b*x^2 + c*x^4)^(1/2)/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b x^{2} + c x^{4}}}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/x**2, x)

________________________________________________________________________________________